PROPAGATION OF THE FRONT OF A STRONG SHOCK
WAVE IN AN INHOMOGENEOUS ATMOSPHERE
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An equation describing the propagation of the front of a point explosion in an inhomogeneous
atmosphere is derived here with the aid of dimensional analysis, The solution for an expo-
nential atmosphere agrees with already known results.

The problem concerning the propagation of the front of a strong shock wave in an inhomogeneous me-
dium, as is well known, is not an autonomous one. For a power-law density distribution relative to the
center

p = arl; a,l= const, (1)

the method by L. I, Sedov [1] reduces the problem to the fundamental autonomous problem of a strong ex-
plosion in a homogeneous medium. In that problem the front propagation R(t) is determined without re-
gard to the distribution of gasodynamic parameters behind the front. More precisely, the law of motion is
determined for the wave front within an accuracy down to a constant (of the order of unity) calculated from
the energy integral,

For an exponential-law atmosphere, A. S. Kompaneets [2] has developed an approximate method in
which he assumed the gas mass to be concentrated primarily near the front (within a layer of thickness
A ~ (y-1/v+ 1R, tending toward zero as v — 1). During an upward motion (6 = 0), toward lower densi-
ties, the front is accelerated fast and within a relatively short time interval (approximately one second for
energies of the order of 10% ergs) it approaches infinity; for a downward motion this method is unsuitable,
on the other hand, even though the shock wave remains strong for a few tenths of a second, Not only is it
difficult to numerically integrate partial differential equations in coordinates (9, t), as has been shown by
experience, but the results do not apply to'the real nonexponential atmosphere of the Earth. On account of
the fast increasing value of the inhomogeneity parameter h(6) as a function of the explosion altitude H, for
instance, the time of atmospheric breakdown t; ~ (thiI)i/2 would increase with the altitude, which is ab-
surd.

In order to describe how the front of a strong shock wave propagates after a downward breakdown
(6 = 7) in an exponential-law atmosphere, Yu. P. Raizer [3] has proposed an interpolation between his
autonomous solution for a plane shock at infinity and the solution by A. S. Kompaneets at an instant near
breakdown. Unfortunately, this interpolation method is not satisfactory and its application alone is fraught
with difficulties (details will be discussed later),

The author proposes an approximate method of describing the propagation of a point explosion in an
exponential-law and in the real atmosphere, which would match those two solutions within the respective
intervals.

Generally, when the density p is referred to a dimension of length h, the velocity (as well as any

other gasodynamic quantity) can be expressed in terms of two variables (r/R, r/h) rather than in terms of
(r, ty. The velocity at the front (r = R) will be then

u=R= g (R + gy 1) @
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With respect to the dimensionless variable
= R/h(8) (3)

we obtain
X = ”IT b (x). 4)

This phenomenological equation will be our point of departure. It is easy to find the limit values of function
d(x):

D (x) > constx = kk,x at x—>0 (A co0),
corresponding to the transition to a homogeneous atmosphere, and
P(x) =const =%k, .at x—>o00 (B—0),

corresponding to the limiting case of motion in an inhomogeneous atmosphere (toward higher densities).
The latter expression matches the earlier mentioned autonomous solution [3].

Since the density at the wave front depends on x = R/h, hence &(x) can be expressed in terms of den-
sity, which determines the characteristics of the motion, In the phenomenological method it is desirable
to represent the unknown function &(x) in terms of a few parameters, and these should be determined from
any known data (experiment, solutions at the limits). Through the said conditions at the limits, function
& (x) can be represented by the following simpler (power-law) relation:

D) =k [1— (00)"], )
with py denoting the density at the altitude (point) of explosion. Specifically, for an exponential-law at-
mosphere

plog =XM% 1 (8) =hy/(1 — cosh). 6)

With the aid of (5), the equation of motion (4) can be rewritten as
. L ,
X = ‘”t_l' [1 '_‘(pﬁ/p)k] d (7)

For an exponential-law atmosphere (6) the front propagation R(9, t) is expressed in terms of x as
follows:
F (1—e® ) " de = ky Int. 8)

—Ca

At a constant h (for an exponential-law atmosphere) it is worthwhile to introduce the time-scale fac-
tor

T= (o [EE) ©)
Equation (7) and solution (8) do not change as a result. For small values of t (or x} solution (8) should be-
come the Sedov solution for a homogeneous atmosphere, in dimensionless variables

2/5,

x =1 1, =i/t (10)
A comparison with the limit condition derived from (8) yields
kyky = 9/5. (11

The second equation for determining the constants k, and k, will be obtained from the condition that
solution (8) become the autonomous solution in [3] for 6 = x (downward motion), For x > 0 we obtain from
(8)

x

V —khyxy—I ¢
(1 —e ™) dx =&, lnt—, (12)
By 0

where
0

1 ,
£, = exp [-k_ j‘ (1 — 5 1gx] (13)
1

—0
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has the meaning of breakdown fime,
For 6 = 7 at the limit x — « (R — «) we have from (12)

¢
PR S (14)
Ry Lo
It follows from here that the constant k; coincides exactly with the autonomicity criterion in [3] (co-
efficient of the logarithm) and thus k; = ap(¥). For real values of v (1 to 2) ap varies from 1 to 3/2. Cor-

respondingly, k, varies from 0.4 to 0.25. With y = 1.25, for example, we have ap = 1.345 and k, = 0.3.

A result close to this can be obtained in analytic form, on the basis of Eq. (4) written as

: 1
Xx=—— F(x). 15
et (15)

We will express R in the coefficient here approximately, We note, to begin with, that in the com-
bination of length dimensions [1] ‘

R = const (Ef/p)/ ™+ (16)

the density of the medium can be treated as a function of the front radius, i.e., p = p(R), which corre-
sponds to a description of the front propagation in terms of quantities E, t, v, and one gasodynamic func-
tion, in accordance with the earlier discussion. For instance, inserting the power-law expression for the
density (1) and solving Eq. (16) for R leads exactly to the expression which L, I, Sedov has obtained by a
direct combination of dimensional parameters.

It is possible to show that Eq. (15) with F(x) = const and R replaced by (16) describes the front propa-
gation, within a 30-40% accuracy, and constitutes a complete qualitative representation of the pattern of
front propagation in an inhomogeneous atmosphere. The proper choice of the supplementary function F(x)
will yield much more precise results, Thus, we will replace R in Eq. (15) by its said approximation. We
will, furthermore, express F(x) in terms of p(x) according to the conditions at the limits and by again using
the power-law relation., Equation (15) becomes then

d
X — (o) (17)
ds
with
5 = {— cos 6) t{‘;/5; ty =tT. (18)

With the following designations for an expounential-law atmosphere
k=t =5 hy=k"", (19)

we obtain the following solution (in ordinary coordinates)

; 2/5
R:_h(ﬂln l—cose( b ) ] (20)
k TS
From the-condition at the limit when 6 = = we have
R 1 2
= = - In({,/t;,). 21
Xn ke % 5 (t:/t10) (21)

A comparison with the autonomous solution by Yu. P. Raizer (see the discussion following Eq. (14))
yields

2 . g2 % g (22)

5k r 50 5k,

From (21) we find the breakdown time (in T-units):
fo = toft = K™ = (5u,/2)*". ‘ (23)
At v = 1,25, for instance, we obtain t; 207, which is almost identical to the result of calculations
by Eq. (13).

Expression (20) becomes exactly the Sedov solution when t — 0 (t < ty) and when h — «, which corre-
sponds to the transition to a homogeneous atmosphere. When 6 = 0 and t — t,
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This expression corresponds to the autonomous Raizer solution for propagation toward lower den-~
sities, but the autonomicity criterion is here 1.5 times larger than the one which (24) would yield. By the
way, the upward motion following a point explosion is never described by an autonomous solution, We note
that no time parameter appears in the autonomous solution. This parameter appears only in the solution
by the interpolation method.

It has been noted earlier that this solution coincides with known autonomous solutions on the basis of
which the phenomenological parameters are chosen. We will compare the results of solution (8) or (20)
with the results of the Kompaneets method {4]. The breakdown times agree almost exactly: t, = 247, with
T, expressed (like 7) according to (9) but without the Sedov-theory parameter £. Insufficient data obtained
in [4] make it impossible to carry on a precise comparison. However, the characteristic parameters de-
rived here agree closely: the front radius at the instant of breakdown during a downward motion R(r, tj
~ 2h, and during a horizontal motion R(n/2, ty) ~ 3h,, the radius at which the upward velocity is minimum
R(6 = 0, t*) = 3h,, and that minimum velocity, Thus, the agreement of the basic results justifies a con-
clusion that our approximate method concurs with the Kompaneets method, We note, by the way, that the
accuracy of the Kompaneets method for real values of v is about 20-30%.

We note further that the method proposed by Yu. P. Raizer of interpolating between his autonomous
solution and the Kompaneets solution at t* ~ 207, near the breakdown time, is not applicable to the veloc-
ity, because in the autonomous solution the latter is determined entirely by the parameter op and differs
appreciably from the velocity in the Kompaneets solution at that instant of time (because transition to the
autonomous mode occurs later). Interpolation is feasible and follows naturally along the coordinate which
contains the shock parameter A (g-cm™2.sec™ representing the characteristics of prior motion. As a re-
sult, we have

R = xhy = R (lg) 4 0t In [t1(p 1 )15 (25)

Here p, denotes the density at the front at the instant for which interpolation is performed. If the
shock parameter is related to the shock mass, then expression (25) will yield the limit condition (21) for
the solution obtained here. We note that the shock mass M(t*) is never described by an autonomous solu-
tion, while the mass M < M = 18M* is described only approximately. In an exponential-law atmosphere,

a shock wave cannot be considered sufficiently strong any more at a distance corresponding to mass M and,
therefore, an autonomous solution itself becomes inapplicable. Since the velocity of autonomous propaga-
tion does not depend on the energy (it is determined by the parameter ap('y) only), hence an increase in
energy will not extend the applicability of the autonomous sclution.

Equation (7) can be used also for determining the front propagation in any inhomogeneous atmosphere
characterized by some effective parameter h with the dimension of length. The solution is given by a
quadrature expression like (8). Parameters k; and k, can be selected on the basis of the same concepts,
considering the transition to an exponential-law atmosphere,

The density of the Earth's atmosphere can be represented (within measuring accuracy and diurnal
fluctuation) by the following formula:

p(2) =p(0) ™, h(z) = 7+0.026(z— 100), z<<2-10° km (26)
(at z.< 100 km one may assume h = 7). The parameter h introduced here differs from the one based on the
method of smoothest tangency and is usually given in the literature. Representation (26) is a point repre-

sentation and gradually transforms into an exponential-law representation of the atmosphere (with a con-
stant h).
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